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First order theory of groups

If two groups A and B are isomorphic, then every sentence which
is true in A, is also true in B. The sentence may be first order or
second order:

Examples:
∀x(∀y [x , y ] ≈ 1→ x2 ≈ 1)
∀H((H ≤ A ∧ H 6≈ G )→ (∀x∀y(x , y ∈ H → [x , y ] ≈ 1)))

If all valid first order sentences of A and B are the same, then we
can not conclude that A and B are isomorphic.
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So, what is a first order sentence?

Let L = (1,−1 , ·) be the language of groups.The symbol 1 will
denote the identityand −1 will denote the operation of taking
inverse and · will denote the product

Many other operations can be defined in terms of the above
symbols: commutator [x , y ] = xyx−1y−1, conjugate xyx−1, etc.

A first order sentence is any meaningful sequence of the following
symbols
1- variables x , y , z , . . .
2- elements of L and the equality symbol ≈
3- logical connectives ∨,∧,→,¬
4- quantifiers ∀,∃
5- left and right parentheses ( and ).
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Some examples of first order sentences

∀x∀y : [x , y ] ≈ 1 (which means that the group is abelian)
∀x(¬x ≈ 1→ ∃y¬[x , y ] ≈ 1) (which says that the center of group
is trivial)
∀x∀y((¬x ≈ 1 ∧ ¬y ≈ 1)→ (∃z zxz−1 ≈ y)) (which says that the
group has only two conjugate classes
There is a first order sentence which says that the group has n
elements
”This is a finite group” can not be translated to a first order
sentence.

M. Shahryari Algebraic sets with fully characteristic radicals



Some examples of first order sentences

∀x∀y : [x , y ] ≈ 1 (which means that the group is abelian)

∀x(¬x ≈ 1→ ∃y¬[x , y ] ≈ 1) (which says that the center of group
is trivial)
∀x∀y((¬x ≈ 1 ∧ ¬y ≈ 1)→ (∃z zxz−1 ≈ y)) (which says that the
group has only two conjugate classes
There is a first order sentence which says that the group has n
elements
”This is a finite group” can not be translated to a first order
sentence.

M. Shahryari Algebraic sets with fully characteristic radicals



Some examples of first order sentences

∀x∀y : [x , y ] ≈ 1 (which means that the group is abelian)
∀x(¬x ≈ 1→ ∃y¬[x , y ] ≈ 1) (which says that the center of group
is trivial)

∀x∀y((¬x ≈ 1 ∧ ¬y ≈ 1)→ (∃z zxz−1 ≈ y)) (which says that the
group has only two conjugate classes
There is a first order sentence which says that the group has n
elements
”This is a finite group” can not be translated to a first order
sentence.

M. Shahryari Algebraic sets with fully characteristic radicals



Some examples of first order sentences

∀x∀y : [x , y ] ≈ 1 (which means that the group is abelian)
∀x(¬x ≈ 1→ ∃y¬[x , y ] ≈ 1) (which says that the center of group
is trivial)
∀x∀y((¬x ≈ 1 ∧ ¬y ≈ 1)→ (∃z zxz−1 ≈ y)) (which says that the
group has only two conjugate classes

There is a first order sentence which says that the group has n
elements
”This is a finite group” can not be translated to a first order
sentence.

M. Shahryari Algebraic sets with fully characteristic radicals



Some examples of first order sentences

∀x∀y : [x , y ] ≈ 1 (which means that the group is abelian)
∀x(¬x ≈ 1→ ∃y¬[x , y ] ≈ 1) (which says that the center of group
is trivial)
∀x∀y((¬x ≈ 1 ∧ ¬y ≈ 1)→ (∃z zxz−1 ≈ y)) (which says that the
group has only two conjugate classes
There is a first order sentence which says that the group has n
elements

”This is a finite group” can not be translated to a first order
sentence.

M. Shahryari Algebraic sets with fully characteristic radicals



Some examples of first order sentences

∀x∀y : [x , y ] ≈ 1 (which means that the group is abelian)
∀x(¬x ≈ 1→ ∃y¬[x , y ] ≈ 1) (which says that the center of group
is trivial)
∀x∀y((¬x ≈ 1 ∧ ¬y ≈ 1)→ (∃z zxz−1 ≈ y)) (which says that the
group has only two conjugate classes
There is a first order sentence which says that the group has n
elements
”This is a finite group” can not be translated to a first order
sentence.

M. Shahryari Algebraic sets with fully characteristic radicals



For a group A, let Th(A) be the set of all first order sentences
which are true in A.

Th(A) is called the first order theory of A.

Two groups A and B are called elementary equivalent, if
Th(A) = Th(B).

Isomorphic groups are elementary equivalent. The converse is not
true.
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(Z,+) is elementary equivalent to any of its ultra-powers, and it
has many uncountable ultra-powers.

This shows that ”being cyclic” is not a first order property of
groups.

For finite groups: elementary equivalence and isomorphism are the
same.
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Tarski problems (1946)

Every first order sentence in groups is equivalent to a normal form

Q1x1Q2x2 . . .Qnxn ∨i ∧jwij(x1, . . . , xn) ≈± 1

where Qi = ∀ or ∃, ± denotes equality or inequality, and wij are
elements of the free group F (x1, . . . , xn).

If all Qi = ∀, then we say the the sentence is universal.Let

Th∀(A)

be the universal theory of A.
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Alfred Tarski asked the following questions about free groups

1- Is it true that all non-abelian free groups are elementary
equivalent?
2- Classify all groups which are elementary equivalent to
non-ablelian free groups?
3- Is the set Th∀(Fn) decidable?

Attempts to solve this problems create a new area in group theory:

Algebraic geometry over groups

The solutions for all above problem was completed in 2006 by O.
Kharlampovich, A. Miasnikov and Z. Sela (after fundamental
works of Remeslennikov, Makanin, Razburov and many others)
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The summary of results

1- for any m, n > 1 the free groups Fm and Fn are elementary
equivalent.
2- the solutions for the problem 2 are classified.
3- the universal theory of free groups is decidable.
4- a group A is universaly equivalent to a non-abelian free group if
and only if it is fully residually free and they are limit points of the
set of free groups in the space of marked groups.
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Algebraic geometry over groups

We are interested in solution sets of systems of equations in
groups. So let A be an arbitrary group.

There are three types of algebraic geometry over A:

1- coefficient free case
2- Diophantine case (coefficients from A can be used in equations)
3- non-coeffitient-free case (coefficients from some fixed subgroup
can be used)

All three cases are almost the same, so we restrict here ourself to
the case 1 (we don’t use coefficients).
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So, if w(x1, . . . , xn) ∈ Fn, then w ≈ 1 is a group equation. A
solution to this equation is an element (a1, . . . , an) ∈ An such that
w(a1, . . . , an) = 1.

Any subset S ⊆ Fn gives a system of equations

{w ≈ 1 : w ∈ S}

so we call S a system of equations.

Let VA(S) ⊆ An be the solution set.It is called an algebraic set.

Any intersection of algebraic sets is an algebraic set. The union is
not so.
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For any Y ⊆ An, we define the radical

Rad(Y ) = {w ∈ Fn : ∀(a1, . . . , an) ∈ Y w(a1, . . . , an) = 1}.

This is a normal subgroup of Fn and it is called the radical of Y .

For a system of equations S , we define its radical

RadA(S) = Rad(VA(S)).

This is the set of all logical consequences of S in A.
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Some facts about radicals

1- We have S ⊆ 〈SFn〉 ⊆ RadA(S).
2- RadA(S) is the largest system which is equivalent to S in A.
3- If S1 ⊆ S2, then RadA(S2) ⊆ RadA(S1).
4- There is an algebraic description of RadA(S) iff the prevariety
generated by A is axiomatizable.

Remark We have Pvar(A) = SP(A), the least class containing A
which is closed under product and subgroup.
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Zariski topology and equational noetherian groups

Any algebraic set is a closed set. Any finite union of algebraic sets
is a closed set. An arbitrary intersection of finite unions of
algebraic sets is also a closed set. This is Zariski topology on An.
It is not Hausdorff, but it has many interesting properties.

The group A is equational noetherian, if any system S has a finite
subsystem S0 such that VA(S) = VA(S0).

The class of equational noetherian groups is very large.
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Examples:

1- Free groups and torsion-free hyperbolic groups (Sela)
2- Linear groups over commutative noetherian rings (Guba,
Bryant, Baumslag, Remeslennikov, Miasnikov)
3- Free solvable groups (Gupta, Romanovski)
4- Finitely generated metabelian groups (Remeslenikov,
Modabberi, SH)
5- Abelian groups (Baumslag, Remeslennikov, Miasnikov)

Non-example: Baumslag-Solitar group

BSm,n = 〈x , y | xymx−1 = yn〉 (m, n > 1)
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Characterization of equational noetherian groups: The following
assertions are equivalent

1- The group A is equational noetherian.
2- The Zariski topology is neotherian: any descending chain of
closed sets terminates.
3- Any descending chain of algebraic sets terminates.
4- Any ascending chain of Radicals terminates.
5- Every subset of An is compact.
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Some new theorems on equational noetherian groups
(Modabberi, SH)

Theorem Assume that V is variety of groups. Then all elements of
V are equational noetherian if and only if for all n, the relatively
free group FV(n) has max-n.

Corollary Let V be a variety of groups which has finite axiomatic
rank. If all elements of V are equational noetherian, then V is
finitely based.

An group A is called finitely cogenerated, if for any family {Ki}i∈I
of normal subgroups, the assumption

⋂
i∈I Ki = 1 implies that

there is a finite subset I0 ⊆ I such that
⋂

i∈I0 Ki = 1.
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Theorem Let A be a group and V = VarA(A) be the variety
generated by A. Assume that for all m ≥ 1, all finitely generated
subgroup of Am have max− n. Assume also for all n, the group
FV(n) is finitely cogenerated. Then A is equational noetherian.

Theorem Let A be a locally finite group and V = VarA(A) be the
variety generated by A. Assume also for all n, the group FV(n) is
finitely cogenerated. Then A is equational noetherian.
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Coordinate group and Unification

For any Y ⊆ An we define its coordinate group as

Γ(Y ) =
Fn

Rad(Y )

The coordinate group of a system of equations S is defined as

ΓA(S) =
Fn

RadA(S)
.

It is easy to see that this group has a presentation

〈x1, . . . , xn|w = 1 (w ∈ S)〉

Two categories of algebraic sets in A and coordinate groups over A
are anti-isomorphic.
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Determining the structures of coordinate groups is one of the main
problems of theory. For equational noetherian groups we have the
following Unification Theorem (Baumslag, Remeslennikov,
Miasnikov)

Theorem Let A be equational noetherian and G be a finitely
generated group. Then the following assertions are equivalent:

1- G is the coordinate group of some irreducible algebraic set over
A.
2- Th∀(A) ⊆ Th∀(G ).
3- G embeds in some ultra-power of A.
4- G is discriminated by A.
5- G is an A-limit group.

There are some other unification theorems which describe the
coordinate groups in non-equational noetherian case.
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Nullstellensatz

We say that a system of equations S satisfies nullestellensatz over
A if

RadA(S) = 〈SFn〉

Kharlampovich and Miasnikov proved that almost all systems of
quadratic equations over free groups satisfy nullestellensatz.

Theorem(Baumslag, Remeslennikov, Miasnikov)
Let A be an algebraically closed group. Then every finite system of
equations over A satisfies nullestellensatz.

So this is the group-theoretic version of Hilbert’s classical
nullestellensatz.
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Generalized Nullestellensatz is any reasonable description of
radicals (algebraically or algorithmically).

(This means that
RadA(S) is the set of deductive consequences the set of
quasi-identities of A plus S).So we can pose some problems:

1- What is the necessary and sufficient condition for RadA(S) to
be a characteristic subgroup of Fn?
(since it is hard to classify characteristic subgroups of the free
group, this problem is very hard)
2- What is the necessary and sufficient condition for RadA(S) to
be a fully characteristic subgroup of Fn?

Remark Fully characteristic means invariant under all
endomorphisms. In free groups these are exactly the verbal
subgroups.
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Theorem 1 RadA(S) is fully characteristic if and only if
VA(S) =

⋃
i Kn

i , where every Ki is an n-generator subgroup of A.

Corollary 2 Let RadA(S) be fully characteristic subgroup of Fn.
Then there exists a class X of subgroups of A, such that

RadA(S) = Id(X).

By a result of Voughan-Lee we can drop the word ”Fully” in the
above theorem if A is nilpotent of class at most n.

Theorem 3 Let A be nilpotent of class at most n. Then RadA(S)
is characteristic if and only if VA(S) =

⋃
i Kn

i , where every Ki is an
n-generator subgroup of A.
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An application of Theorem 1

Theorem 4 Let S be a system of equations such that
VA(S) =

⋃
i Kn

i for some family of n-generator subgroups of A.
Then there is a variety V such that ΓA(S) = FV(n). The converse
is also true.
One more application

Theorem 5 Let A be a equational noetherian group and W be a
set of group words such that the verbal subgroup W (Fn) is the
radical of some subset of An. Let V be the variety of groups
defined by W . Then FV(n) is equational noetherian.
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