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In this short talk, we discuss some of fascinating and interesting
features and aspects about commutativity degree in finite algebraic
structures, such as semigroups, rings, groups and Moufang loops.
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The study of commutativity degree of finite groups started more
than half a century ago.

The commutativity degree (or commuting
probability) of a finite algebraic structure is defined to be the
probability that two randomly chosen elements of that algebraic
structure commute with each other. In fact, one measures the
abelianness (or commutativeness) of a finite algebraic structure A
by counting the number of pairs of elements of A that commute.
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Let us denote it by Pr(A).

Formally, we have:

Pr(A) =
| {(x , y) ∈ A2 | xy = yx} |

| A |2
=

∑
x∈A | CA(x) |

| A |2
,

where CA(x) is the centralizer of x in A. For a finite group A it has

been proved that Pr(A) = k(A)
|A| where k(A) is the number of

conjugacy classes of A (see [6, 8] for example).
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The first surprising or fascinating known fact about Pr(G ), where
G is a finite group, is that Pr(G ) ≈ 1 implies Pr(G ) = 1.

In other
words, there is no finite group G with 5

8 < Pr(G ) < 1. Also, it has
been proved that every finite group G with Pr(G ) = 5

8 must be

nilpotent (in fact, iff G
Z(G)

∼= C2 × C2), [6]. There are other gaps in
the set:

P1 = {Pr(G ) | G is a finite group}.

For example, there is no finite group G with 7
16 < Pr(G ) < 1

2 ;
however, there is a group G of the order 16 with Pr(G ) = 7

16 and
Pr(S3) = 1

2 , where S3 is the symmetric group of degree 3.
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So, a natural question occurs:

”What is the set P1 look like?”

This question and some others first studied in general by K.S.
Joseph in 1977, [7], who proposed the following three conjectures:

(J1) All limit points of P1 are rational;

(J2) P1 is a well-ordered set by >;

(J3) P1 ∪ {0} is a closed set.
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Recently, S. Eberhard in [4], has shown that conjectures J1 and J2

are true, and so P1 is nowhere dense.

In this direction, he has used
the so-called Egyptian Fractions and their properties.
Before him, Hegarty in 2013, has shown that conjectures J1 and J2

are true for the interval (2
9 , 1].

But, Hegarty had used representation theory to prove his
assertions.
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Some years ago, the speaker of this talk has shown in [1] that
inspite of groups, in finite semigroups, 1 is a limit point of the set:

P2 = {Pr(S) | S is a finite semigroup}.

He has presented an infinite class of finite non-commutative
semigroups and proved that the commutativity degree of the
semigroups in that class may be arbitrarily close to 1 and called
this class of semigroups: almost commutative or approximately
abelian semigroups.
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Also, Givens (2008), Ponomarenko and Seilinski (2012) showed
that P2 is dense in [0, 1] and P2 = Q ∩ [0, 1], respectively,

and so
the conjectures J1 and J2 are not true for finite semigroups.
Therefore, P2 ∪ {0} is not closed and J3 is not also true for them.
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Although, D. MacHale proved in 1976, [8], that there is no finite
ring R with 5

8 < Pr(R) < 1;

however, there is a ring R of the order
8 with Pr(R) = 5

8 , and so the bound 5
8 is the best possible.

But for the time being, we do not know anything about the
Joseph’s conjectures in finite rings.
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A set Q with one binary operation is a quasigroup if the equation
xy = z has a unique solution in Q whenever two of the three
elements x , y , z ∈ Q are specified.

Loop is a quasigroup with a neutral element 1 satisfying
1x = x1 = x for every x .

Moufang loops are loops in which any of the (equivalent) Moufang
identities:

((xy)x)z = x(y(xz)), (M1)
x(y(zy)) = ((xy)z)y , (M2)
(xy)(zx) = x((yz)x), (M3)
(xy)(zx) = (x(yz))x . (M4)

holds.
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The speaker has conjectured that just like groups, in finite
Moufang loops, there is no finite Moufang loop M with
23
32 < Pr(M) < 1.

Actually, for an important class of finite
Moufang loops called Chain loops and its modifications, the same
facts that are satisfied by groups are also true, [2]. Specially, the
analogous of conjectures J1 and J2 are true for the class of finite
Chain loops and its modifications. So, the set:

P3 = {Pr(M) | M is a finite Chain loop}

is nowhere dense and well-ordered by >.

Karim Ahmadidelir Some Fascinating Features of Commutativity Degree ...



. . . . . .

The speaker has conjectured that just like groups, in finite
Moufang loops, there is no finite Moufang loop M with
23
32 < Pr(M) < 1. Actually, for an important class of finite
Moufang loops called Chain loops and its modifications, the same
facts that are satisfied by groups are also true, [2].

Specially, the
analogous of conjectures J1 and J2 are true for the class of finite
Chain loops and its modifications. So, the set:

P3 = {Pr(M) | M is a finite Chain loop}

is nowhere dense and well-ordered by >.

Karim Ahmadidelir Some Fascinating Features of Commutativity Degree ...



. . . . . .

The speaker has conjectured that just like groups, in finite
Moufang loops, there is no finite Moufang loop M with
23
32 < Pr(M) < 1. Actually, for an important class of finite
Moufang loops called Chain loops and its modifications, the same
facts that are satisfied by groups are also true, [2]. Specially, the
analogous of conjectures J1 and J2 are true for the class of finite
Chain loops and its modifications.

So, the set:

P3 = {Pr(M) | M is a finite Chain loop}

is nowhere dense and well-ordered by >.

Karim Ahmadidelir Some Fascinating Features of Commutativity Degree ...



. . . . . .

The speaker has conjectured that just like groups, in finite
Moufang loops, there is no finite Moufang loop M with
23
32 < Pr(M) < 1. Actually, for an important class of finite
Moufang loops called Chain loops and its modifications, the same
facts that are satisfied by groups are also true, [2]. Specially, the
analogous of conjectures J1 and J2 are true for the class of finite
Chain loops and its modifications. So, the set:

P3 = {Pr(M) | M is a finite Chain loop}

is nowhere dense and well-ordered by >.

Karim Ahmadidelir Some Fascinating Features of Commutativity Degree ...



. . . . . .

The speaker has conjectured that just like groups, in finite
Moufang loops, there is no finite Moufang loop M with
23
32 < Pr(M) < 1. Actually, for an important class of finite
Moufang loops called Chain loops and its modifications, the same
facts that are satisfied by groups are also true, [2]. Specially, the
analogous of conjectures J1 and J2 are true for the class of finite
Chain loops and its modifications. So, the set:

P3 = {Pr(M) | M is a finite Chain loop}

is nowhere dense and well-ordered by >.

Karim Ahmadidelir Some Fascinating Features of Commutativity Degree ...



. . . . . .

Now, since by J2, P1 is a well-ordered set, another question is:

”What is the order type of P1?”

Eberhard has proved in [4] that the order type of (P1, >) is either
ωω or ωω2

(only two posibilities). So, we deduce that the order
type of (P3, >) is also either ωω or ωω2

. As the same way, we may
ask the similar questions for finite rings, semigroups and Moufang
loops.
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Also recently, the speaker has defined a new notion, the
associativity degree (or associating probability) of a finite loop L,
denoted by Pas(L), as the probability that three (randomly chosen)
elements of L associate with respect to its operation.

Formally, we
have:

Pas(L) =
|{(x , y , z) ∈ L3 | x(yz) = (xy)z}|

|L3|
.

Then he has tried to obtain a best upper bound for Pas(M), where
M is a finite non-associative Moufang loop. He has still shown
that for the class of Chain loops, and its modifications, this best
upper bound is 43

64 and it is related to the commutativity degree of
M, Pr(M). Here is also, the conjecture is: for any finite Moufang
loop M, Pas(M) ≤ 43

64 , [3].
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. . . . . .

We know that for the commutativity degree, Pr(L) = 1 iff L is
commutative.

Here is also, Pas(L) = 1 iff L is associative (so is a
group). Therefore, by the above facts we deduce that the set:

P4 = {Pas(M) | M is a finite Chain loop}

is nowhere dense and well-ordered by >, and also, the order type of
(P4, >) is either ωω or ωω2

.
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. . . . . .

Finally, some problems those have been answered about
commutativity degree in finite groups arise about Moufang loops
too, like as:

More generally, it has been proved in group theory that for a finite
group G , if Pr(G ) > 1

12 , Pr(G ) > 1
3 and Pr(G ) > 1

2 , then G is
solvable, supersolvable and nilpotent, respectively. So,
Pr(G ) = 1

12 , 1
3 and 1

2 are the least upper bound on the
commutativity degree of non–solvable, non–supersolvable and
non–nilpotent groups, respectively.

Question 1: Can we determine the structure of a given finite
Moufang loop by its commutativity and/or associativity degrees
(such as nilpotency, solvability, simplicity and so on)?
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If G is a non–abelian finite simple group, then Pr(G ) ≤ 1/12, with
equality for the alternating group of degree 5, A5.

Question 2: Is there a similar upper bound for a non–abelian
finite simple Moufang loop? (For example, the commutativty and
associativity degrees of Paige loop of order 120, which is simple, is
4/25 and 13/125, respectively.)
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It is well-known that there is no finite group G such that
7
16 < Pr(G ) < 1

2 (see [6] or [8]).

So, by Theorem main theorem,
there is no finite non–associative Chain loop M = M(G , 2) such
that 65

128 < Pas(M) < 9
6 .

Question 3: Can we extend this result for all finite Moufang
loops?

By computations with the aim of GAP [5], for all of the
non–associative Moufang loops of order n upto 64, n = 81 and
n = 243, the associativity and the commutativity degrees are not
equal.

Question 4: Is there a finite non–associative Moufang loop M,
with Pas(M) = Pr(M)?
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