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• Murad Özaydn, University of Oklahoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

– A semi-historical introduction to Leavitt path algebras.

• Mohammad Shahryari, University of Tabriz . . . . . . . . . . . . . . . . . . . . . . . . . 24

– Algebraic sets with fully characteristic radicals



KAPLANSKY ZERO DIVISOR CONJECTURE ON GROUP

ALGEBRAS OVER TORSION-FREE GROUPS

ALIREZA ABDOLLAHI

Abstract. Let G be a any torsion-free group and R be an arbitrary commu-
tative integral domain. Kaplansky’s Zero Divisor conjecture states that the
group ring R[G] has no zero divisor, that is if ab = 0 for some a, b ∈ R[G],
then a = 0 or b = 0 . It is known that R[G] has no zero divisor with support
of size at most 2. We will talk about the possible zero divisors in R[G] whose
supports have size 3, where R is the field F2 of order 2 or the ring of integers
Z. In particular we prove that if a zero divisor with support of size 3 exists
in Z[G], then there exists a zero divisor in Z[G] whose support is contained in
{−1, 1}.

1. Introduction and Results

A non-zero element α of a ring R is called a zero divisor if αβ = 0 or βα = 0 for
some non-zero element β ∈ R. A ring R is called a domain if R has no zero divisor.

Irving Kaplansky proposed the following famous question about the zero divisors
of group algebras over torsion-free groups:

Question 1.1 (Problem 6 of [6]). Let G be an arbitrary torsion-free group and F
be any field. Is it true that the group algebra F[G] a domain?

Question 1.1 is mostly known as Kaplansky Zero Divisor Conjecture. This is
known to be true for any field F and one-sided orderable groups G [8]; for amalga-
mated free productsG when the group ring of the subgroup over which the amalgam
is formed satisfies the Ore condition [10]; supersolvable groups [5]; polycyclic-by-
finite groups (see [1], [4] and [13]); elementary amenable groups [7]; one-relator
groups [11]; congruence subgroups [9] and [3]; and certain hyperbolic groups [2].

Zero divisors with small support in group rings of torsion-free groups have been
studied in [12]. It is fairly easy to show that R[G] has no zero divisor with support
of size at most 2.

Here we study zero divisors whose support are of size 3. Some of our results are
the following:

Theorem 1.2. Let G be an arbitrary torsion-free group. If a zero divisor with
support of size 3 exists in Z[G], then there exists a zero divisor in Z[G] whose
support is contained in {−1, 1}.

A simple graph can be associated to a possible zero divisor with support of size
3 in the group algebra F2[G] for a possible torsion-free group G. The graph is
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introduced in [12]. In [12] it is proved that the graph cannot have a triangle. We
have proved that the graph cannot contain more than 20 other subgraphs.

Some forbidden subgraphs of the zero divisor graph
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Figure 1. Two graphs which are not isomorphic to the zero divi-
sor graph Γ



ZERO DIVISORS 3

gi

gmgl gj

gk

Figure 2. The complete bipartite graph K2,3, a forbidden sub-
graph of the zero divisor graph

b
b

b

b

b b

b

b

b
b
b

b
b

C4 −−C5 C4 −−C6

Figure 3. (C4 −−C5) and (C4 −−C6), two forbidden subgraphs
of the zero divisor graph Γ
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Figure 4. The graph C4 − C5 and some forbidden subgraphs
which contains this graph
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Figure 6. The graph C5 − −C5 and some forbidden subgraphs
which contains it
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Figure 7. The graph C5 − C5 and a forbidden subgraph which
contains it
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Some Fascinating Features of Commutativity Degree in Finite
Algebraic Structures

Karim Ahmadidelir
Department of Mathematics, Tabriz Branch,

Islamic Azad University, Tabriz, Iran.
E-mail: kdelir@gmail.com; karim ahmadi@iaut.ac.ir

In this short talk, we discuss some of fascinating and interesting features and
aspects about commutativity degree in finite algebraic structures, such as semi-
groups, rings, groups and Moufang loops. The study of commutativity degree
of finite groups started more than half a century ago. The commutativity de-
gree (or commuting probability) of a finite algebraic structure is defined to be
the probability that two randomly chosen elements of that algebraic structure
commute with each other. In fact, one measures the abelianness (or commu-
tativeness) of a finite algebraic structure A by counting the number of pairs of
elements of A that commute. Let us denote it by Pr(A). Formally, we have:

Pr(A) =
| {(x, y) ∈ A2 | xy = yx} |

| A |2 =

∑
x∈A | CA(x) |
| A |2 ,

where CA(x) is the centralizer of x in A. For a finite group A it has been proved

that Pr(A) = k(A)
|A| where k(A) is the number of conjugacy classes of A (see [5, 7]

for example).
The first surprising or fascinating known fact about Pr(G), where G is a

finite group, is that Pr(G) ≈ 1 implies Pr(G) = 1. In other words, there is no
finite group G with 5

8 < Pr(G) < 1. Also, it has been proved that every finite
group G with Pr(G) = 5

8 must be nilpotent, [5]. There are other gaps in the
set:

P1 = {Pr(G) | G is a finite group}.
For example, there is no finite group G with 7

16 < Pr(G) < 1
2 ; however, there

is a group G of the order 16 with Pr(G) = 7
16 and Pr(S3) = 1

2 , where S3 is the
symmetric group of degree 3. So, a natural question occurs:

”What is the set P1 look like?”

This question and some others first studied in general by K.S. Joseph in 1977,
[6], who proposed the following three conjectures:

(J1) All limit points of P1 are rational;

(J2) P1 is a well-ordered set by >;

(J3) P1 ∪ {0} is a closed set.

Recently, S. Eberhard in [4], has shown that conjectures J1 and J2 are true, and
so P1 is nowhere dense. In this direction, he has used the so-called Egyptian
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Fractions and their properties. Some years ago, the speaker of this talk has
shown in [1] that inspite of groups, in finite semigroups, 1 is a limit point of the
set:

P2 = {Pr(S) | S is a finite semigroup}.
He has presented an infinite class of finite non-commutative semigroups and
proved that the commutativity degree of the semigroups in that class may be
arbitrarily close to 1 and called this class of semigroups: almost commutative or
approximately abelian semigroups. Although, D. MacHale proved in 1976, [7],
that there is no finite ring R with 5

8 < Pr(R) < 1, however, there is a ring R of
the order 8 with Pr(R) = 5

8 , and so the bound 5
8 is the best possible. Also, the

speaker has conjectured that just like groups, in finite Moufang loops, there is
no finite Moufang loop M with 23

32 < Pr(M) < 1. Actually, for an important
class of finite Moufang loops called Chain loops and its modifications, the same
facts that are satisfied by groups are also true, [2]. Specially, the analogous
of conjectures J1 and J2 are true for the class of finite Chain loops and its
modifications. So, the set:

P3 = {Pr(M) |M is a finite Chain loop}

is nowhere dense and well-ordered by >.
Now, since by J2, P1 is a well-ordered set, another question is:

”What is the order type of P1?”

Eberhard has proved in [4] that the order type of (P1, >) is either ωω or ωω
2

(only two posibilities). So, we deduce that the order type of (P3, >) is also

either ωω or ωω
2

. As the same way, we may ask the similar questions for finite
rings and semigroups.

Also recently, the speaker has defined a new notion, the associativity degree
(or associating probability) of a finite loop L, denoted by Pas(L), as the prob-
ability that three (randomly chosen) elements of L associate with respect to its
operation. Formally, we have:

Pas(L) =
|{(x, y, z) ∈ L3 | x(yz) = (xy)z}|

|L3| .

Then he has tried to obtain a best upper bound for Pas(M), where M is a finite
non-associative Moufang loop. He has still shown that for the class of Chain
loops, and its modifications, this best upper bound is 43

64 and it is related to the
commutativity degree of M , Pr(M). Here is also, the conjecture is: for any
finite Moufang loop M , Pas(M) ≤ 43

64 , [3]. We know that for the commutativity
degree, Pr(L) = 1 iff L is commutative. Here is also, Pas(L) = 1 iff L is
associative (so is a group). Therefore, by the above facts we deduce that the
set:

P4 = {Pas(M) |M is a finite Chain loop}
is nowhere dense and well-ordered by >, and also, the order type of (P4, >) is

either ωω or ωω
2

. Finally, we will propose some other conjectures and questions
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about the Commutativity degrees in finite algebraic structures and also about
associativity degrees in finite Moufang loops.
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Universal groups of intermediate growth and their invariant random
subgroups

M. Gökhan Benli ∗

Department of Mathematics
Middle East Technical University, TURKEY

E-mail: benli@metu.edu.tr

Invariant random subgroup (abbreviated IRS) is a convenient term that
stands for a probability measure on the space of subgroups of a group, invariant
under the action of the group by conjugation. In the case of a countable group
G the space S(G) of subgroups of G is supplied with the topology induced from
the Tychonoff topology on {0, 1}G where a subgroup H ≤ G is identified with
its characteristic function χH(g) = 1 if g ∈ H and 0 otherwise. The delta mass
corresponding to a normal subgroup is a trivial example of an IRS, as well as the
average over a finite orbit of delta masses associated with subgroups in a finite
conjugacy class. Hence, we are rather interested in continuous invariant proba-
bility measures on S(G). Clearly, such a measure does not necessarily exist, for
example if the group only has countably many subgroups. Given a countable
group G, a basic question is whether a continuous IRS exists. Ultimately one
wants to describe the structure of the simplex of invariant probability measures
of the topological dynamical system (Inn(G), S(G)) where Inn(G) is the group
of inner automorphisms of G acting on S(G). Of particular interest are ergodic
measures, i.e., the extremal points in the simplex.

A very fruitful idea in the subject belongs to Anatoly Vershik who introduced
the notion of a totally non free action of a locally compact group G on a space
X with invariant measure µ, i.e., an action with the property that different
points x ∈ X have different stabilizers StG(x) µ-almost surely. Then the map
St : X → S(G) defined by x 7→ StG(x) is injective µ-almost surely and the
image of µ under this map is the law of an IRS on G which is continuous and
ergodic whenever µ is.

Recall that, given a finitely generated group G with a system of generators S,
one can consider its growth function γ(n) = γ(G,S)(n) which counts the number
of elements of length at most n. The growth type of this function when n→∞
does not depend on the generating set S and can be polynomial, exponential or
intermediate. The question of existence of groups of intermediate growth was
raised by Milnor and was answered by Grigrochuk in [2]. The main construction
associates with every sequence ω ∈ Ω = {0, 1, 2}N a group Gω generated by four
involutions aω, bω, cω, dω and if ω is not an eventually constant sequence, then
Gω has intermediate growth. Moreover, it was also observed in [2] that the
groups Gω fall into the class of just-infinite branch groups. A group is just
infinite if it is infinite but every proper quotient is finite. A group is branch if
it has a faithful level transitive action on a spherically homogeneous rooted tree
with the property that rigid stabilizers of the levels of the tree are of finite index.

∗ Joint work with R. Grigorchuk and T. Nagnibeda
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Since the groups Gω are just-infinite, they only have countably many quotients.
This raised the question of existence of groups of intermediate growth having
2ℵ0 quotients. Our main theorem is:

Theorem. There exists a finitely generated group of intermediate growth with
2ℵ0 distinct continuous ergodic invariant random subgroups.

The main idea is to take a suitable subset Λ ⊂ Ω of cardinality 2ℵ0 and
consider the group UΛ (which we call the universal group associated to this
family) defined as the quotient of the free group F4 by a normal subgroup N
which is the intersection of normal subgroups Nω, ω ∈ Λ where Gω = F4/Nω.
In this paper we explore this idea further by using IRS on Gω and lift them to
UΛ deducing the main result.
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Products of Finite Groups

M.R.Darafsheh
School of Mathematics, Statistics and Computer Science

University of Tehran, Iran
E-mail: darafsheh@ut.ac.ir

Let G be a finite group and A,B proper subgroups of G. If G = AB, then we say
that G is a factorizable group and A,B are called factors of this factorization.
In this case G is also called the products of two proper subgroups A and B.
The problem of which finite groups are factorizable is still an open problem.

In the book, products of groups, authored by F. De Giovanni, et al. [1], page
13, the authors raise the the question to describe all groups that have a proper
factorization. Although this question is still an open problem, but by imposing
some conditions on factors we are able to find factorization of a group G. This
condition may be to assume that one factor is a simple group or alternating or
a symmetric group, etc. In particular one can see the references [2], [3] and [4].
In this talk we survey results on factorizations of finite groups.
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Triangle-Free Commuting Conjugacy Class Graphs

Ahmad Erfanian ∗

Department of Pure Mathematics,
Ferdowsi University of Mashhad, Mashhad, Iran

E-mail: erfanian@math.um.ac.ir

There are many ways a graph is associated with conjugacy classes of a group.
In 2009, Herzog, Longobardi and Maj [1] introduced the commuting conjugacy
class graph Γ(G) of G associated with the non-central conjugacy classes of G.
The vertices of Γ(G) are the non-central conjugacy classes of G and two distinct
vertices C and D are adjacent whenever there exist two elements x ∈ C and
y ∈ D such that xy = yx. They prove, in particular that for non-abelian
periodic groups G, Γ(G) is an empty graph if and only if G is isomorphic to
one of the groups S3, D8 or Q8. The aim of this article is to classify all finite
groups G with a triangle-free commuting conjugacy class graph. We will state
the structure of all groups G with Γ(G) is a triangle-free whenever G has odd
or even order, G is non-abelian soluble or centerless non-soluble. For instance,
we prove the following :

Theorem. Let G be a finite group whose commuting conjugacy class graph Γ(G)
is a triangle-free.

(i) If G is a group of odd order, then |G| = 21 or 27 .
(ii) Suppose G is a group of even order which is not a 2-group. If Z(G) 6= 1

then G is isomorphic to D12 or T12 = 〈a, b
∣∣a4 = b3 = 1, ba = a−1〉. (iii) If

G is a centerless non-soluble group, then G is isomorphic to one of the groups
PSL(2, q) (q ∈ {4, 7, 9}), PSL(3, 4) or SmallGroup(960, 11357). (iv) If G is a
non-abelian soluble group with Z(G) = 1, then G is isomorphic to one of the
groups: S3, D10, A4, S4, SmallGroup(72, 41),
SmallGroup(192, 1023) or SmallGroup(192, 1025).

Note that the nth group of order m in the GAP small groups library is
denote by SmallGroup(m,n).
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4th Cemal Koç Algebra Days 2016 16

Finite groups admitting a dihedral group of automorphisms

İsmai̇l Ş. Güloğlu ∗

Department of Mathematics
Doğuş University, Istanbul, Turkey

E-mail: iguloglu@dogus.edu.tr

Let F be a nilpotent group acted on by a group H via automorphisms and let
the group G admit the semidirect product FH as a group of automorphisms
so that CG(F ) = 1. By a well known result [1] due to Belyaev and Hartley,
the solvability of G is consequence of the fixed point free action of the nilpo-
tent group F . A lot of research, [7],[10], [11], [13], [14], [15] investigating the
structure of G has been conducted in case where FH is a Frobenius group with
kernel F and complement H. So the immediate question one could ask was
whether the condition of being Frobenius for FH could be weakened or not. In
this direction we introduced the concept of a Frobenius-like group in [8] as a
generalization of Frobenius group and investigated the structure of G when the
group FH is Frobenius-like [3],[4],[5],[6]. In particular, we obtained in [3] the
same conclusion as in [10]; namely the nilpotent lengths of G and CG(H) are
the same, when the Frobenius group FH is replaced by a Frobenius-like group
under some additional assumptions. In a similar attempt in [16] Shumyatsky
considered the case where FH is a dihedral group and proved the following:

Let D = 〈α, β〉 be a dihedral group generated by the involutions α and β and
let F = 〈αβ〉. (Here, D = FH where H = 〈α〉) Suppose that D acts on the
group G by automorphisms in such a way that CG(F ) = 1. If CG(α) and CG(β)
are both nilpotent then G is nilpotent.

In the present paper we extend his result as follows:

Theorem. Let D = 〈α, β〉 be a dihedral group generated by the involutions α
and β and let F = 〈αβ〉. Suppose that D acts on the group G by automorphisms
in such a way that CG(F ) = 1. Then the nilpotent length of G is equal to the
maximum of the nilpotent lengths of the subgroups CG(α) and CG(β).

After completing the proof we became aware of the paper [2] by de Melo and
seen that the above theorem follows as a corollary of the main theorem of the
paper of de Melo, which is given below:

Theorem. Let M = FH be a finite group that is a product of a normal abelian
subgroup F and an abelian subgroup H. Assume that all elements in M\F have
prime order p, and F has at most one subgroup of order p. Suppose that M

∗ This work has been supported by the research project TÜBİTAK 114F223. It is a
joint work with Gülin Ercan, Department of Mathematics, Middle East Technical University,
Ankara, Turkey
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acts on a finite group G in such a manner that CG(F ) = 1. Then Fi(CG(H)) =
Fi(G) ∩ Cg(H) for all i and h(G) ≤ h(CG(H)) + 1.

The proof we give relies on the investigation of D-towers in G in the sense
of [17] and the following proposition which, we think, can be effectively used in
similar situations.

Proposition. Let D = 〈α, β〉 be a dihedral group generated by the involutions
α and β. Suppose that D acts on a q-group Q for some prime q and let V
be a kQD-module for a field k of characteristic different from q such that the
group F = 〈αβ〉 acts fixed point freely on the semidirect product V Q. If CQ(α)
acts nontrivially on V then we have CV (α) 6= 0 and Ker(CQ(α) onCV (α)) =
Ker(CQ(α) onV ).
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Representations of Leavitt path algebras over an additive category
with Krull-Schmidt
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In an additive category with Krull-Schmidt every object has a unique (up to
ordering) representation as a (finite) direct sum of indecomposables. This is less
restrictive than a Krull-Schmidt category where the endomorphism rings of in-
decomposables need to be local [K]. The category of finitely generated modules
over a PID is an example. The category of unital modules of an Leavitt path
algebra (over a field) is equivalent to the category of functors from a digraph
(regarded as a small category where vertices are the objects and paths are the
morphisms) to vector spaces satisfying an isomorphism condition by [KO, The-
orem 2]. This enables us to talk about representations of an LPA (Leavitt path
algebra) over an additive category without actually defining the LPA. In fact the
algebra is only defined up to Morita equivalence when it exists! If Krull-Schmidt
holds in the additive category then there is a classification of all representations
similar to the classification of all finite dimensional representations over a field
[KO, Theorem 32]. In particular there is a nonzero unital module if and only if
the digraph has a maximal cycle or a maximal sink.
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On the subgroup generated by autocommutators
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It is well-known that the set of all commutators in a group is not necessarily
a subgroup, see for instance the nice survey by L-C. Kappe and R.F. Morse
[4]. Many authors have considered subsets of a group G related to commutators
asking if they are subgroups.

Now let (G,+) be an abelian group. With g ∈ G and ϕ ∈ Aut(G), the
automorphism group of G, we define the autocommutator of g and ϕ as

[g, ϕ] = −g + gα.

We denote by

K?(G) = {[g, ϕ] | g ∈ G,ϕ ∈ Aut(G)}
the set of all autocommutators of G and, following [2], we write

G? = 〈K?(G)〉.

D. Garrison, L-C. Kappe and D. Yull proved in [1] that in a finite abelian
group the set of autocommutators always forms a subgroup. Furthermore they
found a nilpotent group of class 2 and of order 64 in which the set of all auto-
commutators does not form a subgroup, and they proved that it is an example
of minimal order. In this talk we will discuss the relationship between K?(G)

and G? in infinite abelian groups, as done in [3] jointly with L-C. Kappe and
M. Maj.
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Recognize some structural properties of a finite group from orders
of its elements
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Let G be a periodic group. The problem of obtaining information about the
structure of G by looking at the orders of its elements has been considered by
many authors, from many different points of view. In this talk we consider a

finite group G, and we study the function on the element orders of G defined
by

ψ(G) =
∑
x∈G

o(x),

where o(x) is the order of the element x.

H. Amiri, J. Amiri and M. Isaacs proved that if G has order n and Cn
denotes the cyclic group of order n, then

ψ(G) ≤ ψ(Cn),

and
ψ(G) = ψ(Cn) if and only if G ' Cn.

We discuss some results concerning the structure of the group G assuming
some inequalities involving ψ(G).

Some other functions on the orders of the elements of a finite group G have
been recently investigated by M. Garonzi and M. Patassini
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A Semi-historical introduction to Leavitt path algebras

Murad Özaydın
Department of Mathematics

University of Oklahoma, Norman, OK, USA
E-mail: mozaydin@ou.edu

LPAs (Leavitt Path Algebras) were defined just over a decade ago (Abrams and
Aranda Pino, 2005; Ara, Moreno and Pardo, 2007) but they have roots in the
works of Leavitt in the 60s focused on understanding the extent of the failure
of the IBN (Invariant Basis Number) property for arbitrary rings. A ring has
IBN if any two bases of a finitely generated free module have the same number
of elements. Fields, division rings, commutative rings, Noetherian rings all have
IBN. A classical example of a ring without IBN is the algebra of endomorphisms
of a countably infinite dimensional vector space. The free module of rank 1 over
this ring has bases of n elements for any positive integer n. In the early 60s
Bill Leavitt asked and then answered this question: Given any m < n (positive
integers) is there a ring R having a free module with a basis of m elements and
another basis with n elements but no bases with k elements if k < n and not
equal to m?

The algebras Leavitt constructed are now called the Leavitt algebras and
denoted by L(m,n). They are simple iff m = 1 and have a semi-universal
property among the algebras whose free module of rank m also has a basis of
n elements. That a free L(m,n) module of rank m has a basis of n elements
is immediate from the definition. However, to show that there are no bases
of k elements (k < n, different from m) is essentially a question of nonstable
K-theory and highly nontrivial. This was put in a broader context by George
Bergman in the 70s by constructing rings R with essentially arbitrary V (R) (=
the monoid of isomorphism classes of finitely generated projective R-modules
under direct sum).

L(1, n) is also a Cohn localization (defined by P. M. Cohn in the 70s) of the
noncommutative polynomial algebra in n variables. Since this algebra is the
path (or quiver) algebra of the rose with n petals, with 20/20 hindsight we see a
glimmer of the connection with path algebras. In fact it took three more decades
and a detour through Functional Analysis for the LPAs to be defined. The C∗-
algebras defined by Joachim Cuntz (1977) and later generalizations by Cuntz-
Krieger, Pimsner and others led to the theory of graph C∗-algebras developed in
the 90s (and still active). Now the algebra is defined by a di(rected )graph so the
combinatorial properties of the graph yield corresponding algebraic properties
(both for graph C∗-algebras and the LPAs). LPAs include matrix algebras, the
Jacobson-Toeplitz algebra, quantum spheres and many others as well as the
Leavitt algebras. Most of these algebras have IBN! The closure of an LPA with
respect to an appropriate norm yields the corresponding C∗-graph algebra.

The rings L(1, n) defined by Leavitt and their analytic cousins, the C∗-
algebras of Cuntz are not artificial or pathological structures constructed only
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for the sake of providing counterexamples; for instance they implicitly come
up in Signal Processing (as the algebras generated by the downsampling and
upsampling operators). Moreover Leavitt’s work provided important impetus
for major developments in noncommutative ring theory in the 70s by Cohn,
Bergman and others.

I plan to start with the basic definitions, state some fundamental results,
explain the criterion for an LPA to have IBN (joint work with Muge Kanuni
Er) and, if time permits, indicate the ideas involved in the recent classification
of the finite dimensional representations (jointly with Ayten Koc). While LPAs
are (Cohn) localizations of Path (or Quiver) Algebras whose finite dimensional
representations are usually wild, the category of finite dimensional representa-
tions of LPAs turn out to be tame with a very reasonable classification of all
the indecomposables and the simples. All finite dimensional quotients of LPAs
are also easy to describe.
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Algebraic sets with fully characteristic radicals
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Let G be a group and S be a system of group equations with coefficients in
G. We denote by RadG(S) the set of all group equations which are logical
consequences of S in G. In general, one can not give a deductive description of
RadG(S), because it depends on the axiomatizablity of the prevariety generated
by G. In this direction, any good description of the radicals is important from
the algebraic geometric point of view.

In this talk, we give a necessary and sufficient condition for RadG(S) to be
fully characteristic (invariant under all endomorphisms). We apply our main
result to obtain connections between radicals, identities, coordinate algebras
and relatively free groups. Although most of the results can be formulate in the
general frame of arbitrary algebraic structures, we mainly focus on groups in
what follows. As a summary, we give here some results in the case of coefficient
free algebraic geometry of groups.

Let E ⊆ Gn be an algebraic set (with no coefficients). Then the radical
Rad(E) is a fully characteristic (equivalently verbal) subgroup of the free group
Fn, if and only if, there exists a family {Ki} of n-generator subgroups of G
such that E =

⋃
iK

n
i . As a result, we will show that if RadG(S) is a verbal

subgroup of Fn, then there exists a family X of n-generator subgroups of G such
that RadG(S) is exactly the set of all group identities valid in X. We also see
that under this conditions, there exists a variety W of groups, such that the
n-generator relatively free group in W is the coordinate group of S. We will
prove also that if G is a nilpotent group of class at most n and E ⊆ Gn is
an algebraic set, then Rad(E) is a characteristic subgroup of Fn, if and only if
E =

⋃
iK

n
i for some family {Ki} of n-generator subgroups of G.

References

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov. Algebraic geometry over
groups, I. Algebraic sets and ideal theory. J. Algebra, 1999, 219, pp. 16-79.

[2] A. Myasnikov, V. Remeslennikov. Algebraic geometry over groups, II. Log-
ical Fundations. J. Algebra, 2000, 234, pp. 225-276.


